(*corresponding author, G graduate student, UG undergraduate student)

Barragan, N.; Deepika, B.; Sivaraman, M.; Loya, J.D.; Babaguchi K.; Findlater, M.; Hutchins, K.M.; Yan, W. L.*, Selective Removal of Barium and Hardness Ions from Brackish Water with Chemically Enhanced Electrodialysis. ACS ES&T Water, 2022, 2, 288-298.
https://doi.org/10.1021/acsestwater.1c00278

Zhang, Z.; Yan, W. L.; Messan, O.; Fang, J.; Jackson, W. A. Abiotic Reduction of Nitrate and Chlorate by Green Rust, ACS Earth and Space Chemistry, 2021, 5, 8, 2042-2051.
https://doi.org/10.1021/acsearthspacechem.1c00121

Islam, S.G; Redwan A.; Millerick K.; Filip, J.; Fan, L.G; Yan, W.L.* Synergistic Effect of Zero Valent Iron (ZVI) Amendment and Biological Sulfate Reducing Culture on Reductive Dechlorination of Trichloroethylene (TCE), Environmental Science and Technology, 2021, 55, 4851-4861.
https://doi.org/10.1021/acs.est.0c07702

Islam, S.G; Han, Y.L.G; Yan, W.L.* Reactions of Chlorinated Ethenes with Sulfur-amended Commercial Iron Materials: Reactivity Enhancement and Inhibition Effects, Environmental Science Processes and Impacts, 2020, 22, 759-770.
https://doi.org/10.1039/c9em00593e

Li, Y.G; Baghi, R.; Hope-weeks, L.; Filip, J.; Yan, W. L.* Activation of peroxydisulfate by spinel ferrites for phenol oxidation, ACS Sustainable Chemistry and Engineering, 2019, 79, 8099-8108.
https://doi.org/10.1021/acssuschemeng.8b05257

M. Brundrett; Yan, W. L.; M. Vasquez; A. Jackson. Abiotic Reduction of Chlorate by Fe(II) Minerals: Implications for Occurrence and Transformation of Oxy-Chlorine Species on Earth and Mars, ACS Earth and Space Chemistry, 2019, 35, 700-710.
https://doi.org/10.1021/acsearthspacechem.8b00206

Han, Y. L.G; Liu, C. G.; Horita, J.; Yan, W. L.* Trichloroethene (TCE) Hydrodechlorination by Ni-Fe Nanoparticles: Influence of Aqueous Anions on Catalytic Pathways, Chemosphere, 2018, 205, 404-413.
http://doi.org/10.1016/j.chemosphere.2018.04.083

Han, Y. L.G; Yan, W. L.* Enhancing the performance of zero-valent iron for reductive dechlorination of trichloroethylene through surface sulfidation treatment. Environmental Science & Technology, 2016, 50 (23), 12992-13001.
http://dx.doi.org/10.1021/acs.est.6b03997

Li, Y.G; Bland, GUG; Yan, W.L.* Enhanced Arsenite Removal through Surface-catalyzed Oxidative Coagulation Treatment. Chemosphere, 2016, 150, 650-658.
http://dx.doi.org/10.1016/j.chemosphere.2016.02.006

Wang, W.; Li, S.L.; Yan, W. L.; Zhang, W.X. Removal of Pb(II) and Zn(II) using Lime and Nanoscale Zero-valent Iron (nZVI): A comparative Study. Chemical Engineering Journal, 304, 79-88.
http://dx.doi.org/10.1016/j.cej.2016.06.069

Han, Y. L.G; Liu, C.J.; Horita, J.; Yan, W. L.* Trichloroethene Hydrodechlorination by Pd-Fe Bimetallic Nanoparticles: Solute-induced Catalyst Deactivation Analyzed by Carbon Isotope Fractionation. Applied Catalysis B: Environmental, 2016, 188, 77-86.
http://dx.doi.org/10.1016/j.apcatb.2016.01.047

Li, Y.G; Machala, L.; Yan, W. L.* Fe-impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor. Environmental Science & Technology, 2016, 50 (3), 1190-1199.
http://dx.doi.org/10.1021/acs.est.5b03970

Li, Y.G; Hung, F.; Hope-Weeks, L.; Yan, W. L.* Fe/Al Binary Oxide Aerogels and Xerogels for Catalytic Oxidation of Aqueous Contaminants. Separation & Purification Technology, 2015, 156 (3), 1035 – 1040.
http://dx.doi.org/10.1016/j.seppur.2015.09.056

Han, Y. L.G; Yang, M. D.UG; Yan, W. L.*; Optimizing Synthesis Conditions of Nanoscale Zero-valent Iron (nZVI) through Aqueous Reactivity Assessment. Frontier of Environmental Science and Engineering, 2015, 9 (5), 813-822.
http://dx.doi.org/10.1007/s11783-015-0784-z

Han, Y. L.G; Yan, W. L.* Bimetallic Nickel-iron Nanoparticles for Groundwater Decontamination: Effect of Groundwater Constituents on Surface Deactivation. Water Research, 2014, 66, 149-159.
http://dx.doi.org/10.1016/j.watres.2014.08.001

Chaung, S. H.; Wu, P. F.; Kao, Y. L.; Yan, W. L.; Lien, H. L. Nanoscale Zero-Valent Iron for Sulfide Removal from Digested Piggery Wastewater. Journal of Nanomaterials, 2014, article 518242.
http://dx.doi.org/10.1155/2014/518242

Li S. L.; Wang, W.; Yan, W. L.; Zhang, W. X. Nanoscale Zero-Valent Iron (nZVI) for Treatment of Concentrated Cu(II) Wastewater: A Field Demonstration. Environmental Science: Processes and Impacts, 2013, 16 (3), 524.
http://dx.doi.org/10.1039/C3EM00578J

Xiang, A. S.; Yan, W. L.; Koel, B. E.; Jaffe, P. R. Poly(acrylic acid) coating induced 2-line ferrihydrite nanoparticle transport in saturated porous media. Journal of Nanoparticle Research, 2013, 15 (7), 1705.
http://dx.doi.org/10.1007/s11051-013-1705-3

Yan, W. L.*; Lien, H. L.; Koel, B. E.; Zhang, W. X. Iron nanoparticles for environmental clean-up: Recent developments and future outlook. Environmental Science: Processes and Impacts, 2013, 15 (1), 63-67.
http://dx.doi.org/10.1039/c2em30691c

Yan, W. L.; Vasic, R.; Frenkel, A.; Koel, B. E. Intra-particle reduction of arsenite (As(III)) by nanoscale zerovalent iron (nZVI) investigated with in situ X-ray absorption spectroscopy. Environmental Science & Technology, 2012, 46, 7018-7026.
http://dx.doi.org/10.1021/es2039695

Yan, W. L.; Ramos, M. A. V.; Koel, B. E.; Zhang, W. X. As(III) Sequestration by Iron Nanoparticles: Study of Solid-phase Redox Transformations with X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 5303-5311.
http://dx.doi.org/10.1021/jp208600n

Yan, W.; Herzing, A. A.; Kiely, C. J.; Zhang, W. X. Nanoscale zero-valent iron (nZVI): Aspects of the Nanoparticle Structure and Reactions with Inorganic Species in Water. Journal of Contaminant Hydrology, 2010, 118, 96-104.
http://dx.doi.org/10.1016/j.jconhyd.2010.09.003

Yan, W. L.; Ramos, M. A. V.; Koel, B. E.; Zhang, W. X. Multi-tiered distributions of arsenic in iron nanoparticles: observation of dual redox functionality enabled by a core-shell structure. Chemical Communications, 2010, 46, 6995-6997.
http://dx.doi.org/10.1039/C0CC02311F

Yan, W. L.; Herzing, A. A.; Li, X. Q.; Kiely, C. J.; Zhang, W. X. Structural evolution of Pd-doped nanoscale zero-valent Iron (nZVI) in aqueous media and implications for particle aging and reactivity. Environmental Science & Technology, 2010, 44, 4288-4294.
http://dx.doi.org/10.1021/es100051q

Li, S. L.; Yan, W. L.; Zhang, W. X.; Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chemistry, 2009, 11, 1618-1626.
http://dx.doi.org/10.1039/B913056J

Ramos, M. A. V.; Yan, W. L.; Li, X. Q.; Koel, B. E.; Zhang, W. X., Simultaneous Oxidation and Reduction of Arsenic by Zero-Valent Iron Nanoparticles: Understanding the Significance of the Core-Shell Structure. Journal of Physical Chemistry C 2009, 113, 14591-14594.
http://dx.doi.org/10.1021/jp9051837

Martin, J. E.; Herzing, A. A.; Yan, W. L.; Li, X; Koel, B. E.; Kiely, C. J.; Zhang, W. X . Determination of the Oxide Thickness in Core-Shell Zero-Valent Iron nanoparticles. Langmuir, 2008, 24, 4329-4334.
http://dx.doi.org/10.1021/la703689k

Yan, W. L.; Bai, R.B. Adsorption of Lead and Humic acid on Chitosan Hydrogel Beads. Water Research, 2005, 39, 688-698.
http://dx.doi.org/10.1016/j.watres.2004.11.007